ERGO

Do you exist? I think therefore I am? From Socrates to Descartes, the question has dogged mankind. Now with Ergo you can prove your existence while disproving the existence of your friends!

I play therefore I am!

CONTENTS

A deck of Ergo contains everything you need to prove you exist. 4 of each Variable Card (A, B, C and D)
4 of each Operator Card (AND, OR, THEN) 6 NOT Cards
8 Parenthesis Cards 3 Fallacy Cards
3 Justification Cards
1 Tabula Rasa Card
1 Revolution Card
2 Wild Cards (1 Variable wild and 10 perator wild) 3 Ergo Cards

SET-UP

Assign one of 4 variables to each player: A, B, C or D. Players may wish to write down their assigned variable so they don't forget it during game play. Shuffile all cards, then deal five cards to each player. You're ready to begin!

HOW TO PLAY ERCO

Ergo is played in a series of rounds, each consisting of a series of turns.

THE ROUND

During each round, players attempt to collectively build a Proof that proves their existence, while disproving the existence of any other player.
When a Proof is stopped, the round ends and the players score points as appropriate. All cards are collected and then shuffiled; another five cards are dealt to each player and another round begins. The rounds continue until a single player achieves enough points to secure victory over the entire game (see Ending a Round and Winning the Game, respectively, below).

A TURN

At the beginning of all rounds, the youngest player starts a turn. Each player; in clockwise order, then takes a turn, following the same steps until the round stops.
On each turn a player must always draw two cards and then play two cards. If the player does not want to play a card(s) to the Proof-or if the player cannot play a card(s) to the Proof-the player must discard. At the end of each player's turn, they will always have five cards in their hand.

Building The Proof

When playing cards to the Proof, players must abide by the following rules (see Card Rules, at right, for additional rules that pertain to specific card types):

- The Proof can only have four Premises (or lines) of cards. If four Premises are already in the Proof, then any cards played must be to one of the four Premises.
- Operator Cards (AND, OR, THEN) and Variable Cards (A, B, C, D) cannot be placed directly adjacent to a card of the same type.
- Operator Cards (AND, OR, THEN) must connect two Variable Cards.
- Parenthesis Cards may only be played in pairs (an open and close parenthesis).
- Cards may be inserted between existing cards of the expanding Proof as long as all the rules above are maintained.

ENDING A ROUND

\becauseWhen someone plays an Ergo Card, or when the last card is drawn from the draw pile and that player's turn ends, the Proof stops. However, an Ergo Card cannot be played until there is at least one of each Variable Card somewhere in the Proof.
Follow the rules of logic (see other side of rules sheet) to determine which variables logically follow from the Proof. A player whose variable is proven true is awarded 1 point for every card in the Proof. If there are multiple players with true variables, then each proven player is awarded the maximum points.
NOTE: If there is a paradox (a contradiction) within the Proof, then no points are awarded to any player for the round. A paradox exists when any variable is both proven and disproven in the Proof to:

WINNING THE GAME
The first player to earn 50 points wins.

GAME TERMS

Proof: The area where cards are played in an effort to prove (or disprove) the existence of a given variable. This area may consist of four rows of cards called Premises (lines); does not include cards played directly against a player, which are placed in front of that player.
Premises (Lines): One of four rows on the playing area (the Proof) where cards are placed.
Variable (Variable Card): One of four Variable Cards-A, B, C or D-that represent each of the four players in a game.
Operator (Operałor Card): One of three Operator Cards-AND, OR, THEN.
Tabula Rasa: Clean Slate; remove any card from the Proof. Syntax Rules: This refers to the rules for how cards may be played to the Proof (see Building The Proof, at left below).

CARD RULES

The following additional rules apply for the following cards:

NOT

Place a NOT Card in front of an existing Variable Card to negate (disprove) it. NOT can only be placed in front of variables or an opening parenthesis and applies only to the variable immediately following. Double negatives (two NOT Cards) can only be used with parentheses.

PARENTHESES

Parentheses must be played simultaneously, and cannot be left unpaired. When used wisely, they can effectively change the meaning of a given premise, and they also allow for double negatives.

should be the same as

©TABULA RASA
To play this card, remove a card from the existing Proof and place it on the bottom of the draw pile. Any card may be removed, but at the end of the turn all syntax rules must be maintained (see Building The Proof, at left).
Discard the Tabula Rasa Card after playing it; it is not returned to the draw pile and cannot be put back into play until the next round.

REVOLUTION

To play this card, take two cards of the same type (Operator or Variable) and switch their places within the Proof. Discari the Revolution Card after playing it; it is not returned to the draw pile and cannot be put back into play until the next round.

WILD

Play this card in the place of the card you need. The Variable Card can be played as an A, B, C or D. The Operator Card can be played as a NOT, AND, OR, or IF/THEN. Both cards should be played with the desired variable on top.
Wild Cards may also be used as Proof Cards and Ergo Cards, and so can end a round.

FALLACY AND JUSTIFICATION
The Fallacy Card is played on another player by placing it in front of them. When a Fallacy has been played on someone, that player cannot add to the Proof for three turns, or until they play a Justification Card on top of it to counter the effects. For ease of play, simply turn the Fallacy Card one side to the right for each of those three turns; on the player's fourth turn, the card would be rotated back to its normal position, which means it is discarded (placed at the bottom of the draw pile). The player then takes his turn as normal.
If a player discards a Fallacy Card after three turns, another Fallacy Card may be played on that player this round. However, once a player has played a Justification Card over a Fallacy Card, that player cannot be the target of another Fallacy Card this round.
Wild Cards may also be used as a Justification Card (but never a Fallacy Card).

OPERATOR CARDS: THE ORDER OF OPERATIONS
Operator Cards are THEN, OR, and AND. The THEN card has the strongest
cohesive connection, followed by OR and then AND.

unless parentheses are used

The following is a sample round; Player 1 is A , Player 2 is B , Player 3 is C , and no one is D .
 parenthesis.

TURN 7
Player 1 draws two cards and then plays a Fallacy Card on Player 2 while discarding a card.

TURN 8
Player 2 draws two cards and, without a Justification card, is unable to play any cards to the Proof. He discards two cards.

TURN 9
Player 3 draws two cards and then plays a NOT on the third premise and a D on a new premise.

NOTE: There are now four

Premises (lines), so no more lines may be added. All four variables are in the Proof, so the game may end at any time.

TURN 10 Player 1 draws two cards and then plays a Tabula Rasa Card to remove a NOT from Premise (line) 3 and then a Ergo Card, and ends the round. A and D are the only proven variables (there isn't a paradox), and so A receives 12 points, 1 for each card in the Proof; if there was a D player, they also would receive the 12 points.

RULES OF LOGIC

The following classical rules of logic determine if variables are proven true (or not) from the Proof. The names of some shortcuts are in Latin (with English translations in parentheses).

BIVALENCE

If something is "Not True," it can be considered false. If something is "Not False," it can be considered true.

Then you can conclude "B."
NON-CONTRADICTION

This can be considered true, but doesn't prove anything. May be used to prove other variables.

MODUS TOLLENS (THE WAY THAT DENIES BY DENYING)

Then you can conclude not "A."

HYPOTHETICAL SYLLOGISM (THEORY OF CONSEQUENCES)

You can conclude "A" "THEN" "C."

DEMORGAN'S LAWS

CRIIMSS

CREDITS
Game Concept: Brian Knudson and Brent Knudson Game Design: Brian Knudson Game Development: Randall N. Bills
Editing: Diane Piron-Gelman
Graphic Design: Brent Knudson
Package Design: Mathew Mchelly Revisions: Matt Heerdt

Published by Catalyst Game Labs, an imprint of InMediaRes Productions, LLC PMB 202 • $30391 s t$ Ave NE • $6502 \bullet$ Lake Stevens, WA 98258

